11
Null hypotheses and p-values

11.1 The null value of a parameter

With most probability models there is one particular value of the parame-
ter which corresponds to there being no effect. This value is called the null
value, or null hypothesis. For a parameter 8 we will denote this null value
by 6,. In classical statistical theory, considerable emphasis is placed on
the need to disprove (or reject) the null hypothesis before claiming positive
findings, and the procedures which are used to this end are called statisti-
cal significance tests. However, the emphasis in this theory on accepting or
rejecting null hypotheses has led to widespread misunderstanding and mis-

reporting in the medical research literature. In epidemiology, which is not ~

We usefulness of the idea has been particularly
questioned. Undoubtedly the idea of statistical significance testing has
been overused, at the expense of the more useful procedures for estimation
of parameters which we have discussed in previous chapters. However, it
remains useful. A null hypotheses is a wMthesis and measur-
ing the extent to which the data are in conflict with it remains a valuable
part of scientific reasoning. In recent years there has been a trend away
from a making a straight choice between accepting or rejecting the null
hypothesis. Instead, the degree of support for the null hypothesis is mea-
sured, for example using the log likelihood ratio at the null value of the
parameter.

' EXAM?LE: GENETIC LINKAGE BY THE SIB PAIR METHOD

We shall illustrate the methods of this chapter with a simple statistical
problem arising in the detection of linkage between a genetic marker and a
gene which carries an increased susceptibility to a disease. At the marker
locus each offspring receives one of two possible haplotypes from the mother
and one of two possible haplotypes from the father. If there are many pos-
sible haplotypes we can safely assume that the mother and father together
have four different marker haplotypes. The marker is then said to be highly
polymorphic. If the mother has haplotypes (a,b) and the father (c,d), possi-
ble haplotype configurations for offspring are (a,c), (a,d), (b,c), and (b,d).
If inheritance of the marker obeys Mendelian laws, the probability that

THE NULL VALUE OF A PARAMETER 97

Table 11.1. Linkage of the HLA locus to nasopharyngeal cancer suscep-
tibility

Haplotypes Number of Probability

shared sib pairs  (null value)
2 16 0.25
1 8 0.50
0 3 0.25

two siblings have completely different marker haplotypes {no haplotypes in
common) is 0.25 and the probability that they have the same pair of haplo-
types (two haplotypes in common) is also 0.25. The remaining possibility
is that they have one marker haplotype in common, which has probability
0.50.

T we deliberately choose two siblings who are both affected by the
disease, then these siblings will be more similar in that part of the genome
surrounding the disease susceptibility gene than we would expect by chance.
If the marker locus is in this vicinity, then the probabilities that two affected
sibs will share 0, 1, or 2 marker haplotypes will depart from the (0.25, 0.5,
0.25) split indicated above. This way of looking for genetic linkage is called
the affected sib pair method. If disease susceptibility is conferred by a
dominant gene, it can be shown thit the main effect of linkage is to reduce
the probability of the affected sibs sharing no marker haplotypes and to
increase the probability of their sharing both, while the probability of their
sharing one marker haplotype is scarcely affected. A simple and reasonably
efficient statistical analysis may therefore be carried out by disregarding the
pairs sharing one marker haplotype.

Table 11.1 shows the frequency of shared HLA haplotypes amongst 27
pairs of sibs affected by nasopharyngeal carcinoma.* Assuming dominant
inheritance of the disease susceptibility gene and ignoring the 8 sib pairs
with only one marker gene in common leaves N = 19 pairs, 16 of which
share both haplotypes, and 3 of which share no haplotypes. Let Q2 be the
odds that a pair shares Waplotypes. The log likelihood
for Q is

161og(£2) — 191og(1 + ).

The most likely value of 2 is 16/3 = 5.33, so that the maximum value of
the log likelihood is

16log(5.33) — 1910g(6.33) = —8.29

*From Day, N.E. and Simons, J. (1976) Tissue Antigens, 8, 109-119."
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Fig. 11.1. Log likelihood ratio for HL.A linkage.
and the log likelihood ratio fop any other value of € is
161og(2) — 1910g(1 + Q) — (—8.29).

Fig. 11.1 shows the log likelihood ratio plotted against log(€2).
Under the null hypothesis that there is no linkage, the two outcomes are

equally probable, so the null value of ©2 is 1.0 and the null value for log(Q) -

is O This is indicated in Fig. 11.1 by the vertical line. The log likelihood
ratio for Q =1 is

16log(1) — 1910g(2) — (—8.29) = —4.88
. . 7
(1{1d1.(_:a,ted on the graph with an arrow). The null value of £ does not fall
within the range which we have regarded as supported.

Whet_her the mode of inheritance of disease suscepfibility is dominant
or recessive must be established in studies of extended families. If it is
domlnar}t, the likelihood ratio test described above provides an efficient
test of linkage. However, if the disease susceptibility gene is refessive, the

probability that affected si ill share one marker hapl i

I otype in co

is also reduced and a fiore efficient t@st for linkage . eg’ It? &lisn;(fiﬁ_\
between 2 and < 2 shared Haplotypes. In this case the null value of the

Ared na

odds parameter 2 is 0.25/0.75 = 0.333.

Exercise 11.1. If the evidence for ) is based i i i
on the 16:11 spl
the log likelihood ratio for Q = 0.333. "piit ot sib pairs, find
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11.2 Log likelihood ratios and p-values

As with the supported range for a parameter a general need is felt to
measure support for the null hypothesis-on the more familiar scale of prob-
ability. The way this is done in frequentist statistical theory is very similar
to the way in which coverage probabilities are calculated for confidence
intervals (see Chapter 10). We imagine a large number of repetitions of
the study with the parameter equal to its null value and define the p-value

e

significant. If the p-value is large, the finding is said to be not statistically
significant. Traditionally the*value p = 0.05 has been used to divide signif-
icant from non-significant results, but the modern practice is to report the
actual p-value, particularly when it lies in the range 0.001 to 0.10. Outside
this range it is enough to give the p-value as p < 0.001 or p > 0.10.

The argument which defines the p-value closely follows that used to
define the coverage probability of & supported range in Chapter 10. Asin
that case, we shall start with the problem of drawing conclusions about the
value of the Gaussian mean, g, on the basis of a single observation, z. In
this case, the value of thwli_llood ratio for a null value pg is equal

to
RYELITAY
2 o ’

Exercise 11.2. You observe a value z = 116 and wish to test the hypothesis
that it was obtained from a Gaussian distribution with mean x = 100 (the null
value). Assuming that o is known to take the value 10, what is the value of the
log likelihood ratio at the null value?

We imagine a large number of repetitions 'bf the study when the null hy-
pothesis is true. The p-value is the proportion of such repetitions with log
likelihood ratios less than this observed value. One way that the p-value

. can be calculated is by computer simulation of such repetitions of the study.

Exercise 11.3. Such a simulation is envisaged in Exercise 10.1. Of the first four
values generated, what proportion have log likelihood ratios at the null value less

. than that observed?

This is a very inaccurate estimate of the p-value. An accurate estimate
would, of course, require several thousand repetitions to be generated.
The method of generating a p-value by computer simulation is known
as a Monte Carlo test and it is quite widely used. However, in this case
we do not need to resort to the computer as we can work out the p-value
theoretically. If X represents the value obtained in such a repetition, the
p-value is defined as the probability that this yields a smaller log likelihood
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ratio than that observed, that is,
1/X~pp\?
Pr [—5 (Tﬂe> < Observed log likelihood ratio} .
e
This is the same as

2
Pr [(X—;@> > —2 x (Observed log likelihood ratio)} Y

and since we are agsuming that the null hypothesis is true in such repeti-
tions, the above probability is obtained by referring

—2 x (Observed log likelihood ratio)

to the chi-squared distribution on one degree of freedom.

Exercise 11.4. Use the table of the chi-squared distribution in Appendix D to
find the p-value for the example of Exercise 11.2

For N observations from a Gaussian distribution, the same rule for obtain-
ing the p-value holds, the value of minus twice the log likelihood ratio now

being . )
M — po
(%)

where M is the mean of the N observations and S = o/v/'N.

This relationship between the log likelihood ratio and the p-value holds
approzimately for non-Gaussian log likelihoods. The approximation will be

PPTOTITY

adequate providing there is a sufficient amount of data to ensure that the
log likelihood curve is approximately quadratic.

In our example of testing for genetic linkage, using the method most
appropriate for dominant inheritance, the log likelihood ratio at the null
parameter value is —4.88 so that

—2 x (log likelihood ratio) = 9.76.

The probability of this being exceeded in a chi-squared distribution on one
degree of freedom is 0.0018, so that the p-value is approximately 0.002.
This is an example of a log likelihood ratio test.

Exercise 11.5. Use tables of the chi-squared distribution to find the p-value
corresponding to the log likelihood ratio calculated in Exercise 11.1.

There are two other approximate methods of obtaining p-values which are
widely used. These are called Wald tests and score tests, and both involve

—_
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quadratic approximations to the log likelihood curve. The problem of cal-
culating exact p-values when these approximate methods cannot be used
will be discussed in Chapter 12.

11.3 Wald tests -

The first quadratic approximation we shall consider is the same as that
used for approximate confidence intervals in Chapter 9. For a parameter,
9, the log likelihood is approximated by the quadratic curve

1 /M-06\?

2 S
whe;e M is the most likely value of the parameter and S is the standard
deviation of the Gaussian approximation, calculated frogj;he curvature of _
log likelihood at its peak- This provides the closest possible appro)umatlon

i the region of the most likely value. Using this approximation, the ap-
proximate value of minus twice the log likelihood ratio at the null value,

9@,15
M —6p\?
8

For the log odds parameter of the Bernoulli likelihood, €2, the values of

M and S are
D
M = log<——N_D>
' 1 1
‘ S = \Vpta-p

For the log likelihood shown in Fig. 11.1,

M = log (?) = 1.674
1 1
S = I + 3= 0.629.

The approximate log likelihood ratio curve corresponding to these values
is shown in Fig. 11.2 (broken lines). The arrow indicates the approximate
log likelihood ratio at the null value, log(£) = 0.0,

1/1.674—0.0)\?
o 22E ) - 354
2 ( 0.629 ) 3
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Fig: 11.2. The Wald test.

The approximate value of minus twice the log likelihood ratio is

1.674 — 0.0\ 2
< 0.629 ) =708

and referring this value to the chi-squared distribution yields an approxi-
mate p-value of 0.008. This method of obtaining an approximate p-value
is called the Wald test. '

Exercise 11.6. Carry out the Wald test which approximates the log likelihood
ratio of Exercise 11.1.

11.4 Score tests

The second quadratic approximation to the log likelihood ratio which we
consider is based on the gradient and curvature of the log likelihood curve
at the null value of the parameter. This is the most accurate quadratic
approximation in the region of the null value. This approximation to the
log likelihood ratio of Fig. 11.1 is shown in Fig. 11.3. Here we have displaced
the true log likelihood ratio curve upwards in order to demonstrate that
the true and approximate curves are the same shape in the region of the
null value. -

If U is the gradient of the log likelihood at the null value of the param-
eter, 0p, and V is minus the curvature (also at the null value), then this
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Fig. 11.3. The score test.

approximation to the log likelihood ratio is given by the formula,

V(6-6-U/V)’
’ .

This approximate curve has its maximum value at 6o + U/V and minus
twice the log likelihood ratio at 8 = 8, is

wy

|4

The gradient, U, is called the score and we shall call V' the score variance.
The approximate score test is carried out by comparing (U)%/V with the
chi-squared distribution with one degree of free.domfr

For the Bernoulli log likelihood in terms of the log odds parameter,
log(€2), the score and score variance at the null value {lg are most easily
expressed in terms of the null value of the probability parameter,

_ Yo -
T T+ 00

TThe score test is usually carried out using the ezpected .value of.V (yvorked ogt
assuming the null hypothesis to be true). In the applications discussed in this book this
is not usually possible, and we have defined the score test in terms of the observed value
of V.

AN
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They are

U = D—Nﬂ'@,
V = Nﬂ'@(l—ﬂ'g).

In our example, D = 16, N = 19, and wp = 0.5 so that

U = 16-95=6.5
V = 19x0.5x0.5=4.75

The score test is (6.5)2/4.75 = 8.89 and the probability that chi-squared
exceeds this value is 0.003.

Exercise 11.7. Carry out the score test which approximates the log likelihood
ratio of Exercise 11.1.

11.5 Which method is best?

The methods for calculating p-values given in this chapter are approximate
except for the special case of a Gaussian: likelihood with known standard
deviation o, when the three methods coincide and yield exact p-values. In
other cases, where the log likelihood is roughly quadratic, the approxima-
tions to the p-value are good and the three methods give similar answers.
When the three methods give seriously different answers this means that
the quadratic approximations are not sufficiently close to the true lbg like-
lihood curve over the region stretching from the null value of the parameter
_# to the most likely value. Of course, if the most likely value and the null
value are very far apart, the curve is very difficult to approximate. In this
situation, all three methods will give very small p-values and although these
may differ substantially from on another, the choice of statistical method
would not affect our scientific conclusions. This is the case in our exanjlple
in which the three methods gave p-values of 0.002, 0.008, and 0.003.
=  The log likelihood ratio test is the only one of the three tests which
remains the same when the parameter is transformed, and is to be preferred
in general. The approximate equivalence of the other two tests to the log
- likelihood ratio test depends on the quadratic approximation, and will be
improved by choosing an appropriate scale for the parameter. In particular,
for parameters such as the odds, or the rate, which can take only positive

values, it is better to calculate Wald and e tests in_ter/ms, of thedog -

parameter. If the three methods differ seriously, even after choosing an
appropriate scale for the parameter, it is usual to advise the use of exact
p-values. Methods for calculating these will be discussed in Chapter 12,
but these are not without their difficulties.
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11.6 One-sided p-values

‘We have defined the p-value as the probability that, when the null hypoth-
esis is true, a repeated study will provide less support for the null value of
the parameter than did the study actually observed. We have measured
support for the null value of the parameter as the difference between the
log likelihood at the null value and the log likelihood at the most likely
value. This is satisfactory when the model allows the parameter to take
any value within its natural range, but needs to be redefined if the model
allows the parameter to vary only within a restricted range. In our HLA
linkage example, if 2 is the odds that a sib pair shares both haplotypes
rather than neither, the null value is @ = 1 and linkage is indicated by
values in the range Q > 1. Values in the range Q < 1 are not allowed in
a model for genetic linkage. In these circumstances, the value of  which
is best supported by a study in which 5 sib pairs are found to share both
haplotypes and 10 sib pairs to share neither is no longer 5/10, since this
parameter value is not allowed by the model. The best supported value
amongst allowable values is = 1. Thus only studies in which the split is
in the expected direction would be regarded as providing evidence against
the null hypothesis. The p-value calculated from this viewpoint is called
a one-sided p-value, while the more usual p-value appropriate when the
model allows the parameter to take values to both sides of the null value
is called a fwo-sided p-value.

Approximate one-sided p-values can be obtained in most circumstances
by simply halving the corresponding two-sided p-value. This follows from
the fact that approximately half of the hypothetical repetitions of the study
under the null hypothesis would lead to results in the wrong direction and,
in a one-sided test, these would not be treated as evidence against the
null value. In our example, the log likelihood ratio test for linkage gave
p = 0.0018 and the approximate one-sided p-value is 0.0009.

The assumption that the probability model only allows its parameter to
take on values to one side of the null value is a strong one and rarely justified
in practice. Thus, one-sided p-values should only be used in exceptional
circumstances. The genetic linkage example is one of these.

11.7_ Tests for the rate parameter

We have described the three methods for obtaining approximate p-values
using a null hypothesis which concerns the parameter of a simple binary
probability model. These methods were all based on the Bernoulli likeli-
hood. In this section we shall describe the corresponding methods for the
rate parameter, A, for a cohort study. Here the log likelihood takes the
Poisson form:

Dlog()) — )Y,
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where D is the number of failures observed and Y is the person-years

observation.
The log likelihood ratio test for the null value A = A compares the log

likelihood at Ay with the log likelihood at A = D/Y’, the most likely value.

The log likelihood ratio is, therefore,

[Dlog(Ap) — AoY] — [D log (g) - gy]

which simplifies to
D
—Dlog (f) + (D - E),

where E = ApY is the ‘expected’ number of failures obtained by multiply-
ing the null value of the rate parameter by the person-years observation in
the study. Minus twice this value can be compared with the chi-squared
distribution with one degree of freedom.

The Wald test is based on the best Gaussian approximation to the log
likelihood in the region of the most likely value. It is best carried out on
the log()\) scale, where M =log(D/Y) and S = /1/D.

Finally, the score test is based on the best Gaussian approximation to
the log likelihood in the region of Ap. Some simple calculus shows that the
score and score variance {on the log(}) scale) are given by

U:D—E, V=E,

so that the score test is (D — E)?/E.

The null hypothesis most frequently of interest is that the rate in the
cohort is no different from the rate in a reference population. Typically
this reference rate is based on official statistics for a whole country and
is estimated from so many events that it can be assumed to be a krewn
constant. In practice the expected number of failures is usually calculated
separately for different age bands and summed and E refers to the total
expected number added over age bands. In Chapter 15 we show that the
theory described above extends without change to this situation.

Exercise 11.8. In the vicinity of a nuclear reprocessing plant, 4 cases of child-
hood leukaemia were observed over a certain period while, from national registra-
tion rates, we would have expected only 0.25. Compare the log likelihood ratio
and score tests of the null hypothesis that the incidence rates of leukaemia in the
area do not differ from the national rates.”

In fhis case the two methods differ considerably, although both suggest
a very small p-value. This reflects the fact that D is very small and the

*These data are discussed in detail by Gardner, M.J. (1989) Journal of the Royal
statistical Society, Series A, 152, 307-326.
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Gaussian approximations are unreliable: We shall discuss methods for use
in such situations in Chapter 12.

11.8 Misinterpretation of p-values

Reporting of p-values has come into. disfavour because they have been
widely misinterpreted. Although the same is true of confidence intervals,
the nature of the misinterpretation of these is much less serious.

Most scientists interpret the 90% confidence interval as a range within
which there is a.90% probability that the parameter value lies. We saw in
Chapter 10 that, in the frequentist view of statistics, this is not correct
— such an interpretation requires probability to be interpreted in terms of
subjective degree of belief. In practice, however, it is not a serious error and
does not usually lead to serious scientific misjudgement. The corresponding
misinterpretation of the p-value, as the probability that the null hypothesis
is true, is a much more serious error. Small studies which should be quite
unconvincing are quoted as strongly negative findings because they have
large p-values. The fact that this error is still widespread is the main reason
why many authors currently discourage the use of p-values.

11.9 Lod scores and p-values

Our example in this chapter concerns genetic linkage and geneticists have
taken a rather different approach to measuring the amount of evidence
against the null hypothesis. Typically the result of a linkage analysis is
presented as a lod score defined in terms of the log (base 10) likelihood for
a parameter, 0, where this is defined as one minus the probability that two
genes are passed from parent to offspring together. This probability is 0.5
when the two loci are unlinked but greater than 0.5 when there is linkage.
Thus the null value of 6, which is called the recombination fraction, is 0.5
and linkage is represented by 6 < 0.5. The lod score for any specified value
of § compares the log likelihood with its value at 8 = 0.5. It is conventional
to consider linkage to have been demonstrated if the most likely value of 8
is less than 0.5 and gives a lod score greater than 3.0.

Using the relationship between the different systems of logarithms ex-
plained in Appendix A, a lod score of 3.0 corresponds to

—2 x (log likelihood ratio) = 13.82

and, referring this to the chi-squared distribution on one degree of freedom
shows this to be approximately equivalent to a p-value of 0.0002. However,
since we are only interested in values of 6 less than 0.5, the test is one-sided
and this value must be halved to yield p ~ 0.0001. This is much smaller
than we would require p-values to be in other areas of research, and it would
appear that geneticists are much more difficult to dissuade from the null



108 NULL HYPOTHESES AND P-VALUES

hypothesis than other scientists. This is usually justified on the grounds
that the human genome is immense and, a priors, it is very unlikely that any
one marker locus is linked to a disease susceptibility gene. This argument
has considerable force when searching a large number of markers in a ‘blind

fishing expedition’, but would not hold if there were good a priori reasons.,

to suspect linkage in a specified region. The interpretation of lod scores,
like that of p-values, must take account of the scientific context and rigid
criteria should be avoided.

Solutions to the exercises

11.1 At the most likely value, Q2 = 16/11 = 1.455, the log likelihood is
16 log(1.455) — 27 log(2.455) = —18.249

while at the null value = 0.333, the log likelihood is
1610g(0.333) — 27 log(1.333) = —25.354.

The log likelihood ratio at the null value is therefore

—25.354 — (—18.249) = —7.105.

11.2 The value of the log likelihood ratio at p = 100 is

~

_1(16-100\7 o
2 10 oo

11.3 The first four observations of the computer simulation were 104, 115,
82 and 92 and the solution to Exercise 10.1 showed that the corresponding
values of the log likelihood ratio at p = 100 are —0.08, —1.125, —1.62 and
—0.32. Only 1 of these is less than the observed log likelihood ratio — a
proportion of 0.25.

11.4 The value of minus twice the observed log likelihood ratio is 2.56 and
referring this to the table of the chi-squared distribution in Appendix D
shows the p-value to be a little over 0.10.

11.5 Minus twice the log likelihood ratio is 14.21. This corresponds to a
very small p-value, 0.00016. Such results are usually reported as p < 0.001.

11.6 The most likely value of the log odds parameter is

M =log(16/11) = 0.375,
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and the standard deviation of the Gaussian approximation to the log like-

lihood around M is
/1 1
S = —1€+ﬁ—0.392.

The null value of the log odds is log(0.333) = —1.100 so that the Wald test

18
0.375 — (~1.100)\* _
(W) = 14.16.

This is very close to minus twice the log likelihood ratio and the approxi-
mate p-value is 0.00017.

11.7 The null value for the probability parameter is mp = 0.25 so that

U 16 — 27 x 0.25 = 9.25,
V = 27x0.25 x0.75 = 5.0625.

il

The score test is
(9.25)2

5.0625
and p-value is less than 0.001.

= 16.90

11.8 The log likelihood ratio chi-squared value is

—2 % [—4log (%) +(4- 0.25)] = 14.681.

The score test is
(4 — 0.25)2

= 56.250.
0.25 5

Both give p < 0.001.



